If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-20t-50=0
a = 1; b = -20; c = -50;
Δ = b2-4ac
Δ = -202-4·1·(-50)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10\sqrt{6}}{2*1}=\frac{20-10\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10\sqrt{6}}{2*1}=\frac{20+10\sqrt{6}}{2} $
| 2/3x+5=x-1 | | 23/x=0.5 | | 5x²+10x-8=110 | | 81=27^-x+5 | | -6x-12=-3x+36 | | r/5=10/8 | | 140=c+65 | | X^2+4x+13=-10 | | 40-3x+5x+10=90 | | (10x+43)+(15x+12)=180 | | (2x+92)+(3x+63)=180 | | 2x^-0.5=8 | | -5x(-8)=-38 | | 62-8x=56-5x | | (10x-2)+102=180 | | 2x+55=7x+25 | | (2x+55)+(7x+25)=180 | | 0=-2x^2+3x | | -10^2=-2x^2+3x | | 1=-2x^2+3x | | (8x-31)+(5x+17)=180 | | 3(4x-8)=6(2x-7) | | 102-x=212 | | a(-3a+5a)=7-5a | | 7x-24=8x+4 | | 22=7-6x=x | | 22=7+6x=x | | 22=7+6x=x | | 22=7+6x=x | | 22=7-6x=-2 | | 6.8x=5.4 | | 6.8x=5.4 |